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Abstract: Humans and animals engage in rich social interactions. It is often1

theorized that a relatively small number of basic social interactions give rise to the2

full range of behavior observed. But no computational theory explaining how social3

interactions combine together has been proposed before. We do so here. We take4

a model, the Social MDP, which is able to express a range of social interactions,5

and extend it to represent linear combinations of social interactions. Practically for6

robotics applications, such models are now able to not just express that an agent7

should help another agent, but to express goal-centric social interactions. Perhaps8

an agent is helping someone get dressed, but preventing them from falling, and is9

happy to exchange stories in the meantime. How an agent responds socially, should10

depend on what it thinks the other agent is doing at that point in time. To encode11

this notion, we take linear combinations of social interactions as defined in Social12

MDPs, and compute the weights on those combinations on the fly depending on the13

goals of other agents. This new model, the Linear Social MDP, enables zero-shot14

reasoning about complex social interactions, provides a mathematical basis for15

the long-standing intuition that social interactions should compose, and leads to16

interesting new behaviors that we validate using human observers. Complex social17

interactions are part of the future of robotics, and having principled mathematical18

models built on a foundation like MDPs will make it possible to bring social19

interactions to every robotic application.20

Keywords: social interaction, goal selection, planning21

1 Introduction22

Machines are only able to understand and reproduce a fairly small and stilted part of the rich social23

behaviors that we observe humans and animals engage in. This is in part because much of the work on24

social robotics is based on ad-hoc approaches rather than mathematical models of social interactions,25

and in part because of an assumption that a relatively small number of basis social interactions will26

eventually give rise to the rich behavior we observe in the animal kingdom. Exactly what combining27

social interactions together means mathematically is left unsaid in such cases. We propose a model28

for social interactions and demonstrate it on a simulated robot that both has a mathematical definition29

for what social interactions are, and, for the first time, defines what linear combinations of social30

interactions are. This gives rise to complex behaviors enabling the robot to have relationships that31

depend on mutual goals, for example, helping an agent achieve some goals, while being willing32

to exchange favors to achieve another set of goals, while preventing the other agent from doing33

something troublesome.34

We make the following contributions, 1. Linear Social MDPs, see Fig. 1, which allow robots to35

zero-shot carry out combinations of social interactions that respond on the fly as the goals of other36

agents change, 2. a demonstration of Linear Social MDPs in a grid world, see Fig. 2 for an example,37

and 3. validation of the resulting behaviors that show humans can recognize them as social.38
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Figure 1: A yellow robot, i, performing nested inference about social interactions with a red robot, j.
A level 0 agent is an MDP; a level 1 agent has social goals, but reasons about other agents as if they
are level 0, so they don’t have social goals. Here, the yellow agent is a level 2 agent; it considers any
social interactions that the red agent might have. This is the basic setup for a Social MDP, with a
critical difference – agents compute the goals of another agent, g, and then compute the compatibility
between those goals and a set of N social interactions, ω, they wish to engage in. The social behavior
of the robots is conditioned on the goals they believe the other agent has.

2 Related Work39

Most research on social robotics is carried out without a model of what social interactions are [1].40

We propose such a model that gives rise to complex social behaviors. In general, we believe that41

mathematical models for social interactions that are understandable from the perspective of robotics42

and compose with common robotic frameworks like MDPs, will both shed light on what social43

interactions are, and bring social robotics into the mainstream.44

Several types of models have been explored to enable agents to effectively interact with one another.45

Inspired by cognitive science, theory-of-mind-based models [2, 3, 4, 5, 6] and Bayesian inverse46

planning [7, 8] approaches are used for goal inference. In reinforcement learning, methods like47

learning reward functions of other agents [9] and learning a latent representation of other agents’48

strategies [10] are used to cooperate with another agent. These methods mainly consider interactions49

that are cooperation or conflict.50

Social MDPs [11, 12] similarly estimate another agent’s reward function but this estimation is51

performed recursively by solving MDPs at different levels. This recursive estimate enables a robot52

to perform social interactions by considering the other agent’s social behaviors. Our model extends53

Social MDPs to change their social interactions to adapt to another agent’s goals.54

Prior research on goal or task selection includes using symbolic planners [13], a situation model [14],55

or task relevancy [15]. These approaches require understanding about knowledge of the tasks or56

planning domains. In multiagent settings, game theoretic approaches such as fictitious play [16] have57

been applied in coordination [17, 18] and trajectory forecasting [19] scenarios to select interaction58

strategies. Approaches such as selecting policy based on other agents’ goals [20] or planning by59

finding equilibria [21] also consider what other agents may want to do in action selection. Our model60

also considers other agents’ goals, but use it for social interactions. The combinations of social61

interactions formulated in our model can respond to changes in the goals of other agents in manner62

which no prior work has could before.63

3 Linear Social MDPs64

Our model extends Social MDPs [11, 12] to condition the social goal on the physical goal of another65

agent. Social MDPs operate by encoding social interactions in the reward function of an MDP. Agents66
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The physical and social goals for the two robots are the same for each example:
Yellow’s goals → , → , compete for →
Red’s goals → , → , exchange for , cooperate →

(a) Yellow: Level 1, Red: Level 0 Video: https://linear-social-mdp.github.io/scenarios/scenario-77/#level-1

Key frames

Frame 3 Frame 6 Frame 12 Frame 18 Frame 27

Yellow’s behavior → →
compete
→ → →

Yellow’s estimate
of Red’s goal → → → → →

Yellow brings water to the tree while the Red is pushing the wood. As Red approaches Yellow briefly competes with Red to
hurriedly move the water away.

(b) Yellow: Level 2, Red: Level 1 Video: https://linear-social-mdp.github.io/scenarios/scenario-77/#level-2

Key frames

Frame 2 Frame 6 Frame 9 Frame 12 Frame 21 Frame 26

Yellow’s behavior → → → → → compete
→

Yellow’s estimate
of Red’s goal → → exchange

for
cooperate
→

cooperate
→

cooperate
→

Rather than competing, Yellow and Red cooperate. This is possible because at Level 2, Yellow can recognize that Red has
the capacity to cooperate, and Red has the ability to try to cooperate by exchanging objects. Neither of these are possible in
(a) as neither agent is social enough.

(c) Yellow: Level 3, Red: Level 2 Video: https://linear-social-mdp.github.io/scenarios/scenario-77/#level-3

Key frames

t11 t24 t28 t38 t40 t43

Yellow’s behavior →
exchange

for
exchange

for
→ → →

Yellow’s estimate
of Red’s goal

cooperate
→

→
then exchange

exchange
for

cooperate
→

conflict
→

conflict
→

As the level of both agents goes up, they become more social. Yellow thinks that Red is constantly attempting to respond
socially to it, leading to both more cooperative behavior and more conflicts toward the end.

Figure 2: Three scenarios starting from the same initial conditions, with the same two robots, having
the same goals (shown at the top), and the same five objects/locations ( , , , , and ).
Each time, both robots are reasoning at different levels of recursion; deeper levels of recursion lead to
more complex behavior as they assume other agents are more social. The graphical model for the
first two levels of social reasoning are shown in Fig. 1. First we show key frames from videos of the
robot’s behavior, then we show what physical and social goals the robots had at various times. We
then provide a brief description of what the robots did. Note the increasingly complex behavior at
deeper levels of social reasoning. Full videos for all the scenarios with results are available in our
online appendix https://linear-social-mdp.github.io/scenarios/
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l Levels of recursive reasoning
st Observed state at time t
ati, a

t
j Actions for agent i and j at time t

gi i’s physical goal
Ωij i’s social goal toward j
ωij i’s each grounded social interaction toward j in social goal Ωij

ψl
i i’s social policy computed at level l

g̃l,i,tj j’s physical goal estimated by i from level l at time t
Ω̃l,i,t

ji j’s social goal toward i estimated by i from level l at time t
ω̃l,i,t
ji j’s each grounded social interaction toward i in social goal

Ω̃l,i,t
ji estimated by i from level l at time t

ψl−1,i
j j’s social policy at level l − 1 estimated by i

Rl
i i’s reward function at level l

r(s, gi) i’s reward for physical goal gi
Rl

Ωij
i’s social reward toward j at level l

c(ai) Cost for taking action ai
gωij

Physical goal involved in the grounded social interaction ωij

ξωij
Type of social interaction involved in the grounded social inter-
action ωij

Ql
i i’s state value function at level l

To compute the policy ψl
i:

Require: l, st, ati, atj ,Ωij , gi
if l = 0 then

solve MDP for agent i
else

g̃l,i,tj ← sample P (g̃l,i,tj |s1:t−1)

Ω̃l,i,t
ji ← compute P (ω̃l,i,t

ji |s
t−1, at−1

i , at−1
j )

ψ̃l−1,i
j ← ψ̃l−1,i

j (st, atj , a
t
i, Ω̃

l,i,t
ji , g̃l,i,tj )

compute Rl
i(s

t, ati, a
t
j ,Ωij , gi)

compute Ql
i(s

t, ati, a
t
j ,Ωij , gi, ψ̃

l−1,i
j )

ψl
i ← argmaxai∈Ai

Ql
i

end if

Figure 3: (left) A gloss of the key notation used. (right) The algorithm to solve Linear Social MDPs
at each time step. We use the estimated social policy ψ̃i,l−1

j at the previous time step to update the
estimated rewards. At t = 0 goals are sampled uniformly.

estimate what another agent is doing, i.e., their reward function, then incorporate that reward function67

into their own. How they incorporate other agent’s reward functions determine what social interaction68

takes place. Incorporating the reward of another agent directly ensures that the two agent’s incentives69

are aligned and they are likely to help one another. Doing so with the opposite sign ensures that the70

agent will try to minimize the reward of another agent, appearing to conflict. Reasoning is nested,71

where agents can be social toward agents they consider asocial (level 1 reasoning), or toward agents72

that they assume will also be social (level 2 reasoning). Deeper levels of reasoning allow for more73

complex social inferences.74

Social MDPs have a major drawback: they can only encode one social interaction regardless of what75

the other agent is doing. An agent that is being helpful will always be helpful, even if the other agent76

is doing something harmful, this is an unrealistic and unreasonable limitation for real-world robotics.77

We create Linear Social MDPs to overcome this problem by allowing for linear combinations of78

social interactions where the coefficients of the interaction depend on the estimated goals of another79

agent. The degree to which the other agent’s goals align with any one social interaction determine80

how strongly it will be incorporated into an agent’s reward function. As a result, agents can go from81

being helpful, to being asocial, to being unhelpful, etc. in the course of a short interaction.82

A Linear Social MDP for an agent i interacting with agent j at level, l, is defined as:83

M l
i = ⟨S,A, T,Ωij , gi, R

l
i, γ⟩ (1)

where S is a set of states s; A = Ai × Aj is the set of joint actions of agents i and j; T is the84

probability distribution of going from state s ∈ S to next state s′ ∈ S given actions of both agents:85

T (s′ | s, ai, aj); Ωij is agent i’s intended social goal with agent j, it consists of a set of grounded86

social interactions ωij ; gi is agent i’s physical goal; Rl
i is the l-th level reward function for agent i87

based on its estimate of other agents’ rewards; and γ is a discount factor, γ ∈ (0, 1).88

3.1 Representing combinations of social interactions89

Each ω ∈ Ωij is a grounded social interaction with two components: ξωij , one of the five types90

of social interaction that i should carry out toward j as defined in Tejwani et al. [12]; and gωij , the91

physical goal that i should think j is pursuing when this social interaction should be carried out.92

Together, these two components define a social interaction that is specific to a set of physical goals.93

The overall reward of an agent i at each time step is computed as follows94

Rl
i(s, ai, aj ,Ωij , gi) = r(s, gi) +RΩij (gi, s, ai, aj)− c(ai) (2)

Where Ωij is a set of social goals conditioned on physical goals, we allow for any linear combination95

of such, gi is the physical goal of the current agent if any, and c(ai) is the cost of an action. Originally96
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rewards for Social MDPs were formulated in terms of distances between goals, but this restricted the97

framework to goals between which one could compute a reasonable Euclidean distance. We relax98

this condition here and instead compute the distance between physical goals as the shortest path from99

the current world state to the physical goal state, r(s, gi).100

The social component of the reward function uses ξωij to transform the estimated reward of another101

agent into a social behavior; see main table in Tejwani et al. [12] for a breakdown. Agent i’s social102

reward when interacting with agent j is then103

Rl
Ωij

(gi, s, ai, aj) =
∑

ωij∈Ωij

∫
ω̃l,i

ji

P (ωij |s)P (ω̃l,i
ji | s, ai, aj)ξωij

(gi, gωij
, ω̃l,i

ji ) dω̃
l,i
ji (3)

This weights a social behavior ξωij
by whether that behavior is relevant to another agent’s goals gωij

:104

P (ωij |s) ≈ P (g̃j = gωij
|s), computed with Eq. (7).105

3.2 Planning combinations of social interactions with Linear Social MDPs106

The Q function is the sum of immediate reward and the expected value in the future by considering107

the estimated social policy of other agent j at a lower level l-1.108

Ql
i(s, ai, aj ,Ωij , gi, ψ̃

l−1,i
j ) = R(s, ai, aj ,Ωij , gi) + γ

∑
s′∈S

T (s, ai, aj , s
′)V l

i (s
′,Ωij , gi, ψ̃

l−1,i
j ) (4)

We denote the estimated social policy for agent j at reasoning level l − 1 as ψ̃l−1,i
j : S ×A× Ω̃l,i

ji ×109

G̃l,i
j → [0, 1]. To compute the state-action value V l

i (s
′,Ωij , gi, ψ̃

l−1,i
j ), Linear Social MDPs take the110

expectation over the estimated goals and actions of agent j:111

V l
i (s

′,Ωij , gi, ψ̃
l−1,i
j ) = max

a′
i∈Ai

{
Eg̃l,i

j ,Ω̃l,i
ji ,a

′
j
[Ql

i(s
′, a′i, a

′
j ,Ωij , gi, ψ̃

l−1,i
j )]

}

= max
a′
i∈Ai

{ ∑
a′
j∈Aj

∑
g̃l,i
j

∫
ω̃l,i

ji

P (g̃l,ij |s
1:t)︸ ︷︷ ︸

estimate physical goal
(Eq. 7)

P (ω̃l,i
ji | s, ai, aj)︸ ︷︷ ︸

estimate social goal
(Eq. 6)

ψ̃l−1,i
j (s′, a′i, a

′
j , ω̃

l,i
ji , g̃

l,i
j )︸ ︷︷ ︸

estimate social policy
(Eq. 8)

Ql
i(·)dω̃

l,i
ji

} (5)

Fig. 1 shows the overview of the model. For agent i at level l, the distributions of estimated physical112

goal and grounded social interaction of agent j (g̃l,ij and ω̃l,i
ji ) are further used to update the agent113

j’s social policy so we can get the actions agent j may take. While each agent may have multiple114

grounded social interactions, we consider only one estimated social goal for the other agent j at each115

time step when solving each agent’s MDP. Fig. 3 (b) summarizes the steps to compute the state-action116

values and select optimal actions for any level l at time step t. We first update the distribution of117

the estimated goals of the other agent j using the observed state and the estimated policy from the118

previous time step. We then sample the goals to update the policy of the other agent j and compute119

the reward and Q function of the target agent i.120

An agent’s estimate of another agent’s physical and social goals at time step t and level l can be121

updated based on the actions performed by the agents. At t = 0, we use uniform distributions for122

physical and social goals. The social goal, estimated at time step t, is updated after actions taken123

by all agents at the previous time step. This update is similar to the belief update in the POMDP124

framework but based on the estimated social policy of the other agent j:125

P (ω̃l,i,t
ji | s

1:t−1, a1:t−1
i , a1:t−1

j ) ∝P (ω̃l,i,t−1
ji | s1:t−2, a1:t−2

i , a1:t−2
j )∑

g̃l,i,t−1
j

P (at−1
j | st−1, ω̃l,i,t−1

ji , g̃l,i,t−1
j )× T (st−1, at−1

i , at−1
j , st) (6)

The physical goal gj of agent j is estimated by agent i as follows. It is marginalized over the estimated126

grounded social interaction as the agent is estimating the social goal at the same time.127

P (g̃l,i,tj |s1:t−1) ∝
∫
ω̃l,i,t

ji

P (s1:t−1|g̃l,i,tj , ω̃l,i,t
ji )P (g̃l,i,tj )P (ω̃l,i,t

ji ) dω̃l,i,t
ji (7)
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The social policy ψ̃l−1,i
j of the agent j at level l-1 is predicted by i using the Q-function at level l-1:128

ψ̃l−1,i
j (s, ai, aj , Ω̃

l,i
ji , g̃

l,i
j ) = Softmax(Ql−1

j (s, ai, aj , Ω̃
l,i
ji , g̃

l,i
j , ψ̃

l−2,j
i )) (8)

This is a softmax policy where we use a temperature parameter τ to control how much the agent129

j follows greedy actions. As shown in Eq. (5), in order to use agent j’s Q function at level l-1, it130

requires to compute agent i’s Q function at level l-2, and so on. Recursively solving Linear Social131

MDPs eventually bottoms out in level 0 where one solves an MDP.132

4 Results133

Given the behavior produced by the Linear Social MDP, we wanted to understand if humans could134

recognize the social interactions being carried out. Unlike the original Social MDPs where interactions135

were fixed, here the interactions changed over the duration of the scenario as the agents switch between136

goals. Additionally, we wanted to understand if Linear Social MDPs can recognize these social137

interactions, not just produce them, and to what extent other baseline models could determine what138

social interactions were being carried out.139

Environment We use a two-agent (a yellow and red robot) 10x10 grid-world environment, with140

five actions (move in one of four directions or stay in place), three physical goals (watering the tree,141

adding logs to a fire and sawing logs), three locations (tree, fire, and saw), and two objects (a log, and142

a water can). In addition to the three physical goals, any combination of physical goals is possible,143

along with one of five social goals (cooperation, conflict, competition, coercion, or exchange) each144

related to one or more physical goals. Robots can move objects by pushing them.145

In all experiments each robot always attempts to achieve two physical goals while engaging in social146

interactions relative to those goals. Those social interactions are conditioned on the physical goals of147

the other agent; or rather, on what the first agent thinks the second agent is doing. Despite having148

a fully-observable environment, agents do not have access to each other’s internal states and must149

estimate each other’s goals.150

We explored every social scenario in this environment1. The Yellow robot always had at most one151

social interaction, while the Red robot always had at most two social interactions. This resulted in152

6 ∗ 6 ∗ 5 = 180 scenarios (eliminating the cause where neither agent considers any social interaction).153

Performance A new solver for Linear Social MDPs was implemented in C++ and CUDA to154

perform GPU-accelerated value iteration. On a workstation with an RTX3090 updating the value155

estimates in parallel over 109 states takes about one minute. With 50 iterations, level 1 Linear Social156

MDPs takes about 40s, while level 3 Linear Social MDPs takes about 10 minutes.157

Baselines We compared our model with inverse planning [7] and a time series classifier.158

We used Bayesian inverse planning [7, 8] to infer agents’ goals, given observations of their behavior.159

The state reward function induced by a social goal depends on the cost of another agent’s action,160

as well as the reward function of the other agent that it wants to interact with. The other agent j’s161

reward function was defined to be the difference of the expectation of i’s reward function and j’s162

action cost function. The scaling of the expected reward of state S for agent i, which determined how163

much j cared about i relative to its own costs. For cooperative agents, the scale was positive, and for164

conflicting agents, the scale is negative.165

The classifier is based on concatenated features from each frame of each video [8, 13]. We built a166

feature vector for each robot consisting of their coordinates, distance to each resource, and whether167

the robot is at the goal state. These features were then input to an LSTM, the final state of which was168

decoded into one of the five interactions.169

1All scenarios with detailed results for all experiments and models are available on our website
https://linear-social-mdp.github.io
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Figure 4: Humans and Linear Social MDPs were asked to predict the social interaction in each
scenario at every time step. This is the result for the Yellow estimating the Red in the scenarios shown
in Fig. 2. For Social MDPs, we show the probability of the grounded social interactions conditioned
on each potential physical goal (P (ω̃l,i

ji |s, ai, aj , gωji
)).

Human experiments A web interface was used to present videos of the robots engaging in social170

interactions and presented to subjects on Prolific [22]. Subjects were first shown several examples of171

each social interaction. Then, they were presented videos of social interactions and asked to classify172

the physical goal of a target robot (one out of three forced choice), to classify any social interactions173

related to that physical goal (one out of five forced choice), and to then rate their confidence. Videos174

were selected randomly and shown four times, incrementally revealing more of the video (starting175

with 25%, then 50%, 75%, and finally showing the full video). 12 subjects (mean age 36) were paid176

an hourly rate of $12. On an average, each subject took 11.3 minutes to complete the experiment.177

Results are summarized in Table 1. Humans were able to recognize all of the social interactions178

when they related to any of the physical goals with high accuracy (chance is 20%, mean accuracy was179

almost always above 70%). This clearly shows that the Linear Social MDPs are able to perform social180

interactions conditioned on specific goals. A qualitative comparison between human judgements and181

the model is shown in Fig. 4, full results are available on our website.182

The Linear Social MDPs are themselves able to recognize the goals and social ineractions in the183

resulting videos. While the inverse planning model and the LSTM had much lower performance.184

5 Limitations185

As with many methods which directly execute MDPs inference times are slow and don’t scale well.186

We are exploring GNN-based approximations to Social MDPs to make them practical for online187

inference.188

Social MDPs assume a fully observable state (although, note that this doesn’t include the189

goals/rewards, both social and physical, of other agents; these are not available and must be in-190

ferred). Social POMDPs would alleviate this problem, and while they are quite straightforward to191

formulate, efficient inference remains a challenge.192
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Social Interaction Human Linear Social MDP (Ours) Inverse Planning LSTM

Cooperation 0.798 0.761 0.742 0.521
Conflict 0.788 0.712 0.717 0.459

Competition 0.683 0.659 0.431 0.278
Coercion 0.808 0.784 0.323 0.172
Exchange 0.669 0.681 0.446 0.081

Table 1: Humans rated how well they could understand the social interactions produced by Linear
Social MDPs. Chance is 20%, overall, they were able to recognize every social interaction, with
‘exchange’ being the most difficult. Linear Social MDPs could recognize the resulting movies as
well, while the inverse planning-based model and the LSTM had difficulty doing so. SocialMDPs
produce videos that are understandable to humans, and they can recognize such videos even when
other models can’t.

A fundamental unknown is the contents and size of the basis space of social interactions and the set193

of operators that combine social interactions. There are no known methods to determine what space194

of the full range of social interactions that humans and animals engage in these methods can account195

for. Even categorizing or recognizing social interactions remains challenging. We are working on196

using these methods to parse videos of social interactions, not just generate behaviors, as a step in197

this direction.198

When Social MDPs engage in an interaction, there is no guarantee that they will display the full range199

of what humans would recognize as that social interaction. Indeed, Social MDPs are formulated200

cannot help by providing information to an agent, since they don’t model partial observability. At201

present, it is unclear how to measure this. It is also unclear how to validate some of the basic202

assumptions of Social MDPs and of Linear Social MDPs, such as the fact that there are multiple203

levels of social reasoning. At least in principle these features of Social MDPs are falsifiable, but we204

are still designing experiments that would enable us to falsify them.205

We only consider interactions between pairs of agents. Moreover, we only consider systems that206

interact briefly and then reset, as does most work in robotics with MDPs. Finally, we consider the207

same specific type of social interaction as that of Social MDPs: social interactions that arise as a208

consequence of some social principle and can be modeled zero-shot, rather than social conventions.209

All societies have conventions that must be learned, like taboos, pleasantries, etc. Practically, for210

example, this may mean that an agent can touch some agents but not others, adding nuance to how an211

agent may be helped or hindered. In principle, such knowledge could be added a prior over the Social212

MDP being used, and indeed, one might define and discover social conventions automatically as the213

residual knowledge after reasoning about the principled social interaction. Being able to reason about214

combinations of social interactions, as we do here, is a step toward tackling such problems.215

6 Conclusion216

Linear combinations of social interactions are meaningful and lead to powerful new behavior. They217

allow MDPs to encode complex social interactions, where agents are not just broadly helping one218

another, but display a wide range of interactions that change in response to other agents’ goals. This is219

encoded by making the coefficients of the linear combination depend on the goals of other agents. The220

resulting models engage in zero-shot social interactions as long as the underlying problem domain221

can be encoded as an MDP.222

We are working on demonstrating Social MDPs on robots while they play physical multiplayer games223

with humans. Many games can be specified as MDPs, and we would like to have a plug-and-play224

solution where a generic ROS package can drive social behavior. We are working on lifting many of225

the limitations described above as well as on further human experiments to validate the approach226

and discover enhancements to the framework. In the long term, we hope to put social robotics on a227

firmer mathematical foundation as well as provide datasets and benchmarks that will make social228

interactions a first class citizen in machine learning and robotics.229
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